9 research outputs found

    Any Data, Any Time, Anywhere: Global Data Access for Science

    Full text link
    Data access is key to science driven by distributed high-throughput computing (DHTC), an essential technology for many major research projects such as High Energy Physics (HEP) experiments. However, achieving efficient data access becomes quite difficult when many independent storage sites are involved because users are burdened with learning the intricacies of accessing each system and keeping careful track of data location. We present an alternate approach: the Any Data, Any Time, Anywhere infrastructure. Combining several existing software products, AAA presents a global, unified view of storage systems - a "data federation," a global filesystem for software delivery, and a workflow management system. We present how one HEP experiment, the Compact Muon Solenoid (CMS), is utilizing the AAA infrastructure and some simple performance metrics.Comment: 9 pages, 6 figures, submitted to 2nd IEEE/ACM International Symposium on Big Data Computing (BDC) 201

    Demand-driven provisioning of Kubernetes-like resources in OSG

    Get PDF
    The OSG-operated Open Science Pool is an HTCondor-based virtual cluster that aggregates resources from compute clusters provided by several organizations. Most of the resources are not owned by OSG, so demand-based dynamic provisioning is important for maximizing usage without incurring excessive waste. OSG has long relied on GlideinWMS for most of its resource provisioning needs but is limited to resources that provide a Grid-compliant Compute Entrypoint. To work around this limitation, the OSG Software Team has developed a glidein container that resource providers could use to directly contribute to the OSPool. The problem with that approach is that it is not demand-driven, relegating it to backfill scenarios only. To address this limitation, a demand-driven direct provisioner of Kubernetes resources has been developed and successfully used on the NRP. The setup still relies on the OSG-maintained backfill container image but automates the provisioning matchmaking and successive requests. That provisioner has also been extended to support Lancium, a green computing cloud provider with a Kubernetes-like proprietary interface. The provisioner logic has been intentionally kept very simple, making this extension a low-cost project. Both NRP and Lancium resources have been provisioned exclusively using this mechanism for many months

    Real-time vapour sensing using an OFET-based electronic nose and genetic programming

    No full text
    Electronic noses (e-noses) are increasingly being used as vapour sensors in a range of application areas. E-noses made up of arrays of organic field-effect transistors (OFETs) are particularly valuable due the range and diversity of the information which they provide concerning analyte binding. This study demonstrates that arrays of OFETs, when combined with a data analysis technique using Genetic Programming (GP), can selectively detect airborne analytes in real time. The use of multiple parameters – on resistance, off current and mobility – collected from multiple transistors coated with different semiconducting polymers gives dramatic improvements in the sensitivity (true positive rate), specificity (true negative rate) and speed of sensing. Computer-controlled data collection allows the identification of analytes in real-time, with a time-lag between exposure and detection of the order of 4 s

    Author Correction: The mutational constraint spectrum quantified from variation in 141,456 humanS

    No full text
    In this Article, author Marquis P. Vawter was missing from the Genome Aggregation Database Consortium list. They are associated with the affiliation: ‘Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, CA, USA’, and contributed to the generation of the primary data incorporated into the gnomAD resource. In addition, in the legend to Fig. 1, ‘ten’ should have been ‘seven’ in the sentence: “a, Uniform manifold approximation and projection (UMAP)46,47 plot depicting the ancestral diversity of all individuals in gnomAD, using seven principal components.” The original Article has been corrected online

    Author Correction: Transcript expression-aware annotation improves rare variant interpretation

    No full text
    In this Article, author Marquis P. Vawter was missing from the Genome Aggregation Database Consortium list. They are associated with the affiliation: ‘Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, CA, USA’, and contributed to the generation of the primary data incorporated into the gnomAD resource. The original Article has been corrected online

    A genomic mutational constraint map using variation in 76,156 human genomes

    No full text
    corecore